Skip to main content

Covariancia Media Móvil Exponencial


EWXCF es la correlación muestral entre X e Y en el tiempo t. Es la covarianza ponderada exponencial de la muestra entre X e Y en el tiempo t. Es la muestra volatilidad exponencial ponderada para la serie temporal X en el tiempo t. Es la muestra volatilidad ponderada exponencial para la serie de tiempo Y en el tiempo t. Es el factor de suavizado utilizado en los cálculos de volatilidad ponderada exponencial y covarianza. Si los conjuntos de datos de entrada no tienen una media cero, la función EWXCF Excel elimina la media de cada muestra de datos en su nombre. El EWXCF utiliza la volatilidad de EWMA y las representaciones de EWCOV que no asumen una volatilidad media de largo plazo (o covarianza), y por lo tanto, para cualquier horizonte de pronóstico más allá de un paso, el EWXCF devuelve un valor constante. Ejemplos Referencias Hull, John C. Opciones, Futuros y Otros Derivados Financial Times / Prentice Hall (2003), pp 385-387, ISBN 1-405-886145 Hamilton, J. Análisis de series temporales. Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S. Análisis de la serie de tiempo financiero John Wiley amp SONS. (2005), ISBN 0-471-690740 Enlaces relacionadosForecasting by Smoothing Techniques Este sitio es una parte de los objetos de aprendizaje de JavaScript E-Labs para la toma de decisiones. Otros JavaScript de esta serie se clasifican en diferentes áreas de aplicaciones en la sección MENÚ de esta página. Una serie de tiempo es una secuencia de observaciones que se ordenan en el tiempo. Inherente en la recolección de datos tomados en el tiempo es una forma de variación al azar. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Las técnicas ampliamente utilizadas son el alisado. Estas técnicas, cuando se aplican correctamente, revelan con mayor claridad las tendencias subyacentes. Introduzca la serie de tiempo en orden de fila en secuencia, comenzando desde la esquina superior izquierda y los parámetros, luego haga clic en el botón Calcular para obtener una previsión de un período de tiempo. Las cajas en blanco no se incluyen en los cálculos, pero los ceros son. Al introducir los datos para pasar de celda a celda en la matriz de datos, utilice la tecla Tab no la flecha o las teclas de entrada. Características de las series temporales, que podrían revelarse al examinar su gráfico. Con los valores pronosticados, y el comportamiento de los residuos, modelado de predicción de condiciones. Promedios móviles: Las medias móviles se encuentran entre las técnicas más populares para el preprocesamiento de series de tiempo. Se utilizan para filtrar el ruido blanco aleatorio de los datos, para hacer la serie temporal más suave o incluso para enfatizar ciertos componentes informativos contenidos en la serie de tiempo. Suavizado exponencial: Este es un esquema muy popular para producir una serie temporal suavizada. Mientras que en Promedios móviles las observaciones anteriores se ponderan igualmente, el suavizado exponencial asigna pesos exponencialmente decrecientes a medida que la observación se hace mayor. En otras palabras, las observaciones recientes reciben un peso relativamente mayor en la predicción que las observaciones más antiguas. Double Exponential Smoothing es mejor para manejar las tendencias. Triple Exponential Smoothing es mejor en el manejo de las tendencias de la parábola. Un promedio móvil ponderado exponencialmente con una constante de suavizado a. Corresponde aproximadamente a una media móvil simple de longitud (es decir, periodo) n, donde a y n están relacionados por: a 2 / (n1) OR n (2 - a) / a. Así, por ejemplo, una media móvil exponencialmente ponderada con una constante de suavizado igual a 0,1 correspondería aproximadamente a un promedio móvil de 19 días. Y una media móvil simple de 40 días correspondería aproximadamente a una media móvil ponderada exponencialmente con una constante de suavizado igual a 0,04878. Holt Lineal Exponencial Suavizado: Suponga que la serie temporal no es estacional pero sí muestra la tendencia. El método Holts estima tanto el nivel actual como la tendencia actual. Observe que la media móvil simple es un caso especial del suavizado exponencial estableciendo el periodo de la media móvil en la parte entera de (2-Alpha) / Alpha. Para la mayoría de los datos empresariales, un parámetro Alpha menor de 0,40 suele ser efectivo. Sin embargo, se puede realizar una búsqueda de cuadrícula del espacio de parámetros, con 0,1 a 0,9, con incrementos de 0,1. Entonces el mejor alfa tiene el menor error absoluto medio (error MA). Cómo comparar varios métodos de suavizado: Aunque existen indicadores numéricos para evaluar la exactitud de la técnica de pronóstico, el enfoque más amplio consiste en utilizar la comparación visual de varios pronósticos para evaluar su exactitud y elegir entre los diversos métodos de pronóstico. En este enfoque, se debe trazar (utilizando, por ejemplo, Excel) en el mismo gráfico los valores originales de una variable de serie temporal y los valores predichos de varios métodos de pronóstico diferentes, facilitando así una comparación visual. Es posible que desee utilizar las previsiones pasadas mediante técnicas de suavizado JavaScript para obtener los valores de pronóstico anteriores basados ​​en técnicas de suavizado que utilizan sólo un parámetro. Holt y Winters usan dos y tres parámetros, respectivamente, por lo que no es una tarea fácil seleccionar los valores óptimos, o incluso casi óptimos por ensayo, y los errores de los parámetros. El único suavizado exponencial enfatiza la perspectiva de corto alcance que fija el nivel a la última observación y se basa en la condición de que no hay tendencia. La regresión lineal, que se ajusta a una línea de mínimos cuadrados a los datos históricos (o datos históricos transformados), representa el largo alcance, que está condicionado por la tendencia básica. El alineamiento exponencial lineal de Holts captura la información sobre la tendencia reciente. Los parámetros en el modelo de Holts son los niveles-parámetro que deben ser disminuidos cuando la cantidad de variación de los datos es grande, y tendencias-parámetro debe ser aumentado si la dirección de la tendencia reciente es apoyada por la causal algunos factores. Pronóstico a Corto Plazo: Observe que cada JavaScript en esta página proporciona un pronóstico de un paso adelante. Obtener un pronóstico de dos pasos adelante. Simplemente agregue el valor pronosticado al final de los datos de la serie temporal y luego haga clic en el mismo botón Calcular. Usted puede repetir este proceso por unas pocas veces con el fin de obtener los pronósticos a corto plazo necesarios. Exploración La volatilidad media ponderada ponderada exponencial es la medida más común de riesgo, pero viene en varios sabores. En un artículo anterior, mostramos cómo calcular la volatilidad histórica simple. Utilizamos la volatilidad para medir el riesgo futuro. Utilizamos los datos reales de los precios de las acciones de Google para calcular la volatilidad diaria basada en 30 días de datos de existencias. En este artículo, mejoraremos la volatilidad simple y discutiremos el promedio móvil exponencialmente ponderado (EWMA). Vs histórico. Volatilidad implícita En primer lugar, permite poner esta métrica en un poco de perspectiva. Existen dos enfoques generales: volatilidad histórica e implícita (o implícita). El enfoque histórico supone que el pasado es un prólogo que medimos la historia con la esperanza de que sea predictivo. La volatilidad implícita, por el contrario, ignora la historia que resuelve por la volatilidad implícita en los precios de mercado. Espera que el mercado conozca mejor y que el precio de mercado contenga, aunque implícitamente, una estimación consensual de la volatilidad. Si nos centramos sólo en los tres enfoques históricos (a la izquierda de arriba), tienen dos pasos en común: Calcular la serie de retornos periódicos Aplicar un esquema de ponderación En primer lugar, Calcular el retorno periódico. Ésa es típicamente una serie de vueltas diarias donde cada vuelta se expresa en términos continuamente compuestos. Para cada día, tomamos el registro natural de la relación de precios de las acciones (es decir, el precio hoy dividido por el precio ayer, y así sucesivamente). Esto produce una serie de retornos diarios, de u i a u i-m. Dependiendo de cuántos días (m días) estamos midiendo. Eso nos lleva al segundo paso: aquí es donde los tres enfoques difieren. En el artículo anterior (Usando Volatilidad Para Calcular el Riesgo Futuro), mostramos que bajo un par de simplificaciones aceptables, la varianza simple es el promedio de los retornos cuadrados: Obsérvese que esto suma cada uno de los retornos periódicos, luego divide ese total por el Número de días u observaciones (m). Por lo tanto, su realmente sólo un promedio de los retornos cuadrados periódico. Dicho de otra manera, cada cuadrado de retorno se da un peso igual. Por lo tanto, si alfa (a) es un factor de ponderación (específicamente, 1 / m), entonces una variante simple se parece a esto: El EWMA mejora en la varianza simple La debilidad de este enfoque es que todas las ganancias ganan el mismo peso. El retorno de ayer (muy reciente) no tiene más influencia sobre la varianza que el retorno de los últimos meses. Este problema se fija mediante la media móvil ponderada exponencialmente (EWMA), en la cual los rendimientos más recientes tienen mayor peso sobre la varianza. La media móvil exponencialmente ponderada (EWMA) introduce lambda. Que se denomina parámetro de suavizado. Lambda debe ser menos de uno. Bajo esta condición, en lugar de iguales ponderaciones, cada cuadrado de retorno es ponderado por un multiplicador de la siguiente manera: Por ejemplo, RiskMetrics TM, una empresa de gestión de riesgos financieros, tiende a utilizar un lambda de 0,94 o 94. En este caso, el primero Más reciente) cuadrado es ponderado por (1-0.94) (. 94) 0 6. El próximo cuadrado de retorno es simplemente un lambda-múltiplo del peso anterior en este caso 6 multiplicado por 94 5.64. Y el tercer día anterior el peso es igual (1-0.94) (0.94) 2 5.30. Ese es el significado de exponencial en EWMA: cada peso es un multiplicador constante (es decir, lambda, que debe ser menor que uno) del peso de los días anteriores. Esto asegura una varianza que está ponderada o sesgada hacia datos más recientes. (Para obtener más información, consulte la hoja de cálculo de Excel para la volatilidad de Google.) A continuación se muestra la diferencia entre la volatilidad y EWMA para Google. La volatilidad simple pesa efectivamente cada vuelta periódica en 0.196 como se muestra en la columna O (teníamos dos años de datos de precios de acciones diarios, es decir, 509 devoluciones diarias y 1/509 0.196). Pero note que la Columna P asigna un peso de 6, luego 5.64, luego 5.3 y así sucesivamente. Esa es la única diferencia entre la varianza simple y EWMA. Recuerde: Después de sumar la serie completa (en la columna Q) tenemos la varianza, que es el cuadrado de la desviación estándar. Si queremos volatilidad, necesitamos recordar tomar la raíz cuadrada de esa varianza. ¿Cuál es la diferencia en la volatilidad diaria entre la varianza y EWMA en el caso de Googles? Su significativo: La variación simple nos dio una volatilidad diaria de 2,4 pero la EWMA dio una volatilidad diaria de sólo 1,4 (ver la hoja de cálculo para más detalles). Aparentemente, la volatilidad de Googles se estableció más recientemente, por lo tanto, una simple varianza podría ser artificialmente alta. La variación de hoy es una función de la variación de los días de Pior Usted notará que necesitábamos calcular una larga serie de pesos exponencialmente decrecientes. No haremos la matemática aquí, pero una de las mejores características de la EWMA es que toda la serie se reduce convenientemente a una fórmula recursiva: Recursiva significa que las referencias de la varianza de hoy (es decir, es una función de la variación de días anteriores). Esta fórmula también se encuentra en la hoja de cálculo, y produce exactamente el mismo resultado que el cálculo de longitud larga. Se dice: La varianza de hoy (bajo EWMA) equivale a la varianza de ayer (ponderada por lambda) más la vuelta al cuadrado de ayer (pesada por uno menos lambda). Observe cómo estamos agregando dos términos juntos: la variación ponderada de ayer y la ponderada ponderada de ayer, la vuelta al cuadrado. Aun así, lambda es nuestro parámetro de suavizado. Un lambda más alto (por ejemplo, como RiskMetrics 94) indica una disminución más lenta en la serie - en términos relativos, vamos a tener más puntos de datos en la serie y van a caer más lentamente. Por otro lado, si reducimos el lambda, indicamos una mayor decaimiento: los pesos se caen más rápidamente y, como resultado directo de la rápida decaimiento, se utilizan menos puntos de datos. (En la hoja de cálculo, lambda es una entrada, para que pueda experimentar con su sensibilidad). Resumen La volatilidad es la desviación estándar instantánea de un stock y la métrica de riesgo más común. Es también la raíz cuadrada de la varianza. Podemos medir la varianza históricamente o implícitamente (volatilidad implícita). Al medir históricamente, el método más fácil es la varianza simple. Pero la debilidad con la varianza simple es que todas las ganancias obtienen el mismo peso. Así que enfrentamos un trade-off clásico: siempre queremos más datos, pero cuanto más datos tengamos, más nuestro cálculo se diluye por datos distantes (menos relevantes). La media móvil exponencialmente ponderada (EWMA) mejora la varianza simple asignando pesos a los retornos periódicos. Haciendo esto, ambos podemos usar un tamaño grande de la muestra pero también dar mayor peso a vueltas más recientes. (Para ver un tutorial de película sobre este tema, visite la Tortuga Biónica.)

Comments

Popular posts from this blog

Bollinger Bands Finance

Descripción Bienvenido Analista Técnico La aplicación de Bollinger Bands combina las características más populares de gráficos y pantallas de nuestros sitios web personalizados para una pantalla táctil móvil. Esta no es una aplicación móvil despojada nuestra aplicación Bollinger Band ofrece características que usted esperaría del software financiero más sofisticado. Creemos que estamos de acuerdo en que ofrece lo mejor de la web, la PC y el mundo móvil. Ofrecemos tablas técnicas totalmente interactivas basadas en el tacto (toque drag, pinch zoom) con rastreadores dinámicos, streaming de datos, historiales de precios profundos y más de 50 indicadores técnicos / superposiciones / paradas y mucho más: Su elección de candelero, Bollinger Bar, barra tradicional , O gráficos de línea COMANDO DE VOZ para modificar la visualización de gráfico, rango, o agregar / quitar indicadores y ajustes AUDIO experto análisis técnico de patrones de gráfico para escuchar fácil, o texto si usted prefiere lee...

Cómo Hacer El Sistema De Comercio De Divisas

Sistemas de Trading Sistemas de Codificación de Comercio son simplemente conjuntos de reglas que los comerciantes utilizan para determinar sus entradas y salidas de una posición. El desarrollo y el uso de sistemas de negociación pueden ayudar a los comerciantes a lograr rendimientos consistentes mientras limitan el riesgo. En una situación ideal, los comerciantes deben sentirse como robots, ejecutar oficios sistemáticamente y sin emoción. Así que, tal vez usted se preguntó: ¿Qué es detener a un robot de comercio de mi sistema La respuesta: Nada Este tutorial le presentará a las herramientas y técnicas que puede utilizar para crear su propio sistema de comercio automatizado. ¿Cómo se crean sistemas automatizados de trading? Los sistemas automatizados de trading se crean convirtiendo sus reglas de sistemas de trading en código que su computadora puede entender. Su computadora entonces ejecuta esas reglas a través de su software comercial, que busca los oficios que se adhieren a sus regla...

Tutorial Del Sistema De Comercio C #

He creado una aplicación comercial en WPF. Por lo que me avergüenzo de su aspecto destartalado, ya que está lejos de ser impresionante. Ahora me gustaría rediseñar la interfaz de usuario para mi aplicación, y lo hacen similar a un ejemplo de captura de pantalla de una aplicación comercial ¿Puede alguien por favor consejo consejos sobre qué camino debo seguir para hacer una interfaz de usuario de naturaleza similar, por ejemplo. Si hay una aplicación de código abierto C WPF que tiene una apariencia similar, que sería genial. O si hay una biblioteca que tiene cool listview, barra de desplazamiento y barras de progreso. PS: No tengo la mezcla de micrófono preguntó Feb 15 11 at 3:15 Puede llamarlo como una sugerencia no una respuesta exactamente. Pero publicar para aquellos que son nuevos en WPF y diseño de pantalla de aprendizaje o patrones. De acuerdo con mi experiencia con WPF puedo decir primero te manos sucias aprender cómo vinculante funciona porque esa es la base de WPF. Simpler man...